Exploring Breast Cancer Texture Analysis through Multilayer Neural Networks

نویسندگان

چکیده

Breast cancer is a significant health problem for women globally; however, timely detection can reduce female morbidity and mortality. Early breast screening has become imperative all women, though, adequate facilities are necessarily required in developing countries like Pakistan, where leading cause of death. To encounter this chronic disease, various image processing techniques have been introduced to automatically diagnose from digital mammograms. The current study deployed data population 35 participants. mammograms used were 5 normal, 15 benign, malignant patients. images marked by the radiologist system was trained with classes. Moreover, Multilayer Neural Networks (MNN) based texture analysis methodology adopted distinguish images. Reportedly, an automated approach detect conditions after conducting Statistical parameters, namely sum, mean, variance, standard deviation, kurtosis, skewness, energy, entropy calculated, analyzed, compared malignant, benign results indicated 100% accuracy analysis. extracted statistical parameters promising reliable distinguishing between mammograms, again indicating need early disease minimize risk among women.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Segmentation and Classification of Breast Cancer Using Independent Component Analysis, Texture Features and Neural Networks

We propose a method for segmentation and classification of breast cancer in digital mammograms using Independent Component Analysis (ICA), Texture Features and Multilayer Perceptron (MLP) Neural Networks. The method was tested for a mammogram set from MIAS database, resulting in 90.15% success rate, with 92% of specificity and 88.3% of sensitivity.

متن کامل

Cross Validation Evaluation for Breast Cancer Prediction Using Multilayer Perceptron Neural Networks

Problem statement: The presence of metastasis in the regional lymph nodes is the most important factor in predicting prognosis in breast cancer. Many biomarkers have been identified that appear to relate to the aggressive behaviour of cancer. However, the nonlinear relation of these markers to nodal status and also the existence of complex interaction between markers have prohibited an accurate...

متن کامل

Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis

Breast cancer is one of the main causes of cancer death worldwide. Early diagnostics significantly increases the chances of correct treatment and survival, but this process is tedious and often leads to a disagreement between pathologists. Computer-aided diagnosis systems showed potential for improving the diagnostic accuracy. In this work, we develop the computational approach based on deep co...

متن کامل

Incremental communication for multilayer neural networks: error analysis

Artificial neural networks (ANNs) involve a large amount of internode communications. To reduce the communication cost as well as the time of learning process in ANNs, we earlier proposed (1995) an incremental internode communication method. In the incremental communication method, instead of communicating the full magnitude of the output value of a node, only the increment or decrement to its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific inquiry and review

سال: 2023

ISSN: ['2521-2427', '2521-2435']

DOI: https://doi.org/10.32350/sir.73.03